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1. AIMS OF THE PAPER

Typical formula for the required capital of a given entity at t .
(Basel regulation)

RCt = max(VaRt , k
1

60

59∑
h=0

VaRt−h)

Potential drawbacks :
• Considers each entity separately, without any

reference to the global system (bottom-up
approach)
• Does not distinguish systematic and unsystematic

sources of risk
• May imply procyclicity
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In this paper we

• Introduce axioms that should be satisfied by the
contributions of individual entities to a global risk
(top-dow approach)
• Characterize the contributions which satisfy these

axioms
• Compare with alternative approaches
• Decompose these contributions in a systematic

and unsystematic part
• Discuss the use of these decompositions in a

regulatory perspective.
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The axioms

2. THREE AXIOMS

2.1 Notations

A global L&P X is decomposed into :

X =
n∑

i=1

Xi

A global reserve (risk) R(X ), depending only on P the
distribution of X , is defined, for instance a VaR, an Expected
Shortfall or any other risk measure.

It has to be assigned to the different entities :

R(X ) =
n∑

i=1

R(X ,Xi)

R(X ,Xi) contribution of entity i to the global reserve (risk)
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2.2 The axioms

A.1. Decentralization axiom

Axiom A1 : R(X ,Xi) depends on the joint distribution of (X ,Xi)
but not on the decomposition of X − Xi into Σj 6=iXj .

i.e. : Minimal confidentiality.
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A.2. Additivity axiom

Axiom A2 : R(X ) =
n∑

i=1

R(X ,Xi) for any decomposition of X

into
n∑

i=1

Xi .

i.e. : the global reserve (risk) does not depend on the number of
entities and on their respective sizes provided that X remains
the same.

Avoid spurious advantages of merging or demerging in terms of
global reserve, when the global L&P remains the same.

Implies that Xi → R(X ,Xi) is additive.
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A.3. Risk ordering axiom

We introduce a notion of directional stochastic dominance :

X ∗1 stochastically dominates X1 at order 2, with respect to X iff :

E [U(X ∗1 ,X − X ∗1 )|X ] ≥ E [U(X1,X − X1)/X ]

for any concave function U (denoted X ∗1 ≥X X1)

Axiom A.3 : R(X ,X ∗1 ) ≤ R(X ,X1) when X ∗1 �X X1
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3. CHARACTERIZATIONS OF THE CONTRIBUTIONS

The contributions satisfying A1, A2, A3 have two
mathematically equivalent characterizations :

i) R(X ,Xi) =

∫
E(Xi |X = x)µP(dx)

where µP is a measure on the range of X satisfying :

R(X ) =

∫
xµP(dx)

ii) R(X ,Xi) =

∫
E [Xi |X = qα(X )]νP(dα)

where qα(X ) is the α-quantile of X and νP is a measure on [0, 1] satisfying :

R(X ) =

∫
qα(X )νP(dα)

νP : Allocation Distortion Measure (ADM)
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Two remarks :

i) If R(X ) is a Distortion Risk Measure (DRM) we have :

R(X ) =

∫
qα(X )H(dα)

where H is a probability measure on [0,1] not depending on P,
(for instance, if H is the point mass at α∗R(X ) is VaR(α∗), if H
is the uniform distribution on [α∗,1] R(X ) is ES(α∗)).
But νP does not have to be equal to H (can depend on P)

ii) If (X1, . . . ,Xn) is Gaussian all the contributions satisfying
A1,A2,A3 are the same, and equal to :
E(Xi) +

Cov(Xi ,X )

V (X )
[R(X )− E(X )]

(expected individual L&P + hedging term, hedging term = beta × economic
capital)
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3. ALTERNATIVE APPROACHES

3.1 CoVaR (Adrian-Brunnermeier (2009))

CoVaR for entity i at level α defined by :
P[Xi < CoVaRi/s,α(X )|X = qα(X )] = α

R(X ,Xi) = CoVaRi/s,α(X )
Decentralization axiom satisfied

n∑
i=1

CoVaRi/s,α(X ) is not a function of the distribution of X only

and additivity axiom not satisfied

Contribution of i to the systematic risk defined by
CoVaRis,α(X )− qα(Xi)
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3.2 Shapley value (Tarashev et al. (2009))

Shapley value : a fair allocation of gains obtained by
cooperation among several actors, based on a
function v(s) measuring the value of this
cooperation for a coalition S ⊂ {1, . . . ,n}

Idea : use v(S) = −R(Σi∈SXi), where R is a risk measure (VaR
or ES), to define the contributions

• Assume cooperation

• Does not satisfy the decentralization axiom.
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3.3 Euler allocations (Tasche (2008))

When R(X ) is homogeneous of order 1

R(λX ) = λR(X ) or, equivalently, defining X (∧) =
n∑

i=1

λiXi ,

R(
n∑

i=1

λiXi) = R[X (∧)] = R∗(∧), and therefore R(X ) = R∗(e),

we have R∗(λe) = λR∗(e) and, using the Euler’s identity :

R(X ) = R∗(e) =
n∑

i=1

∂R∗(e)
∂λi

R(X ,Xi) =
∂R∗(e)
∂λi

Sensitivity interpretation : Marginal effect on the global reserve (risk)
of a shock on the L&P of entity i
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For instance if R(X ) is a DRM :
R(X ) =

∫
qα(X )H(dα)

or R∗(e) =

∫
q∗
α(e)H(dα)

we get :

R(X ) =
n∑

i=1

∫
∂q∗α(e)

∂λi
H(dα)

and R(X ,Xi) =

∫
∂q∗α(e)

∂λi
H(dα)
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∣∣∣∣∣∣∣∣
Lemma 1 : Let us consider the quantile qα(βZ + Y ),
the sensitivity parameter
∂qα(βZ + Y )

∂β
is equal to E [Z |βZ + Y = qα(βZ + Y )]

=⇒ Euler allocation R(X ,Xi) =

∫
E [Xi/X = qα(X )]H(dα)

Therefore : R(X ,Xi) satisfies the second characterization but :
ADM = DM, (νP = H)
and νP does not depend on P.
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Particular cases

• R(X ) is VaRα̃, i.e. H is the Point Mass at α̃ :

Euler allocation : R(X ,Xi) = E [Xi/X = qα̃(X )]

• R(X ) is the Expected Shortfall ESα̃, i.e. H is the Uniform
Distribution on [α̃,1] :

R(X ,Xi) =
1

1− α̃

∫ 1

α̃

q∗α(e)

∂λi
dα

=
∂ES∗α̃(e)

∂λi

16/28
C. Gourieroux, and A. Monfort ALLOCATING SYSTEMATIC AND UNSYSTEMATIC RISKS IN A REGULATORY PERSPECTIVE



AIMS OF THE PAPER
THREE AXIOMS

CHARACTERIZATIONS OF THE CONTRIBUTIONS
ALTERNATIVE APPROACHES

CONTRIBUTIONS TO SYSTEMATIC RISK
REQUIRED CAPITAL

CONCLUSION

CoVaR
Shapley value
Euler allocation

∣∣∣∣∣∣∣∣∣∣∣∣

Lemma 2 : Let us consider the Expected Shortfall
ESα(βZ + Y ) (defined by ESα(βZ + Y ) =
E [βZ + Y |βZ + Y > qα(βZ + Y )] the sensitivity parameter

∂ESα(βZ + Y )

∂β
is equal to E [Z/βZ + Y > qα(βZ + Y )]

Euler Allocation : R(X ,Xi) = E [Xi/X > qα̃(X )]
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However, in this Expected Shortfall case, where R(X ) = ESα̃
there are many other allocations satisfying A1,A2,A3, i.e. of the
form :

R(X ,Xi) =

∫
E(Xi |X = x)µP(dx)

with ESα̃ =

∫
xµP(dx)

for instance if µP is the Point Mass at ESα̃ :

R(X ,Xi) = E(Xi |X = ESα̃)
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4.CONTRIBUTIONS TO SYSTEMATIC RISK

4.1 Linear factor model

Xi =
K∑

k=1

βik fk + γiui = Xs,i + Xu,i

f1, . . . , fK systematic factors
u1, . . . ,un idiosynchratic terms (independent of the f ′ks)

X =
K∑

k=1

βk fk +
n∑

i=1

γiui

with βk =
n∑

i=1

βik

R(X ) : function of P
P : function of β1, . . . , βK , γ1, γn, θ
θ : parameter characterizing the distribution of (f1, . . . , fk , u1, . . . , un)
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Linear factor model
Nonlinear factor model

R(X ,Xi ) =

∫
E |Xi/X = qα(X)]νP(dα)

= R(X ,Xs,i ) + R(X ,Xu,i )

=
K∑

k=1

βik

∫
E [fk/X = qα(x)]νP(dα) + γi

∫
E [ui/X = qα(X)]νP(dα)

R(X ,Xi) = Rs(X ,Xi) + Ru(X ,Xi)

with Rs(X ,Xi ) =
K∑

k=1

βik Rf (X , fk ) systematic part

Rf (X , fk ) =

∫
E [fk/X = qα(X)]νP(dα)

Ru(X ,Xi ) = γi Ru
i (X , ui ) unsystematic part

Ru(X , ui ) =

∫
E [ui/X = qα(X)]νP(dα)
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Linear factor model
Nonlinear factor model

Finally :

R(X ) =
n∑

i=1

R(X ,Xi) =
n∑

i=1

Rs(X ,Xi) +
n∑

i=1

Ru(X ,Xi)

R(X ) = Rs(X ) + Ru(x) (say)
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Linear factor model
Nonlinear factor model

Examples

• R(X ) = qα(X ) (VaR Case)
(i.e. R(X ) is a DRM with H Point Mass at α)
and : νP = H (Euler allocation)

then :
Rf (X , fk ) = E [fk/X = qα(X )]
Ru(X ,ui) = E [ui/X = qα(X )]

•R(X ) = ESα(X ) (Expected Shortfall case)
H uniform distribution on [α,1], and νP = H
replace = by >

22/28
C. Gourieroux, and A. Monfort ALLOCATING SYSTEMATIC AND UNSYSTEMATIC RISKS IN A REGULATORY PERSPECTIVE



AIMS OF THE PAPER
THREE AXIOMS

CHARACTERIZATIONS OF THE CONTRIBUTIONS
ALTERNATIVE APPROACHES

CONTRIBUTIONS TO SYSTEMATIC RISK
REQUIRED CAPITAL

CONCLUSION

Linear factor model
Nonlinear factor model

Case of large number of entities (n = +∞)

lim
n→∞

R(X ,Xi) = lim
n→∞

Rs(X ,Xi)

the unsystematic part disappears

(situation considered in Acharya et al (2010) and Brownlees
Engle (2010))
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Linear factor model
Nonlinear factor model

4.2 Nonlinear factor model
Xi = gi(f ,ui)

f ,ui independent

Xi = E(Xi/f ) + [E(Xi/ui)− E(Xi)]
+[Xi − E(Xi/f )− E(Xi/ui) + E(Xi)]

= Xs,i + Xu,i + Xu,s,i
R(X ,Xi) = Rs(X ,Xi) + Ru(X ,Xi) + Rs,u(X ,Xi)

with Rs(X ,Xi) =

∫
E [Xs,i/X = qα(X )]dνP(α)

and similar expressions for Ru(X ,Xi),Rs,u(X ,Xi) with

R(X ) =

∫
qα(X )dνP(α)
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5. REQUIRED CAPITAL

5.1 Link function

A "Natural" link function would be :

RCi,t = max[R(Xt ,Xit ), kt
1

60

59∑
h=0

R(Xt−h,Xi,t−h)

but the two types of risks should be distinguished, for instance,

RCi,t = max[R(Xt ,Xu,i,t ), ku,t
1
60

59∑
h=0

R(Xt−h,Xu,i,t−h)

+ ks,t
1
H

H−1∑
h=0

R(Xt−h,Xs,i,t−h)

≡ RCu
i,t + RCs

i,t 25/28
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5.2 Change of global risk measure

Previous idea : transform a "Point In Time" (PIT) measure
R(Xt ,Xi,t ), into a "Through The Cycle" (TTC) measure RCi,t
depending on current and lagged values

Two step approach lacks coherency, for instance, additivity not
satisfied

One step TTC approach ?

In the factor model framework the global measure R(.) should
depend not only on X but also on F .
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R(Ft ,Xt )

For instance,

R(X ,F ) = E(X ) + E [(X − c(F ))+]

The basic results becomes :

R(X ,F ,Xi) =

∫
E(Xi/X = qα(X ))νP∗(dα)

P∗ distribution of (X ,F )

with
∫

qα(X )νP∗(dα) = R(X ,F )
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6. CONCLUSION
• "Allocation" or "contribution" problem different from Risk

measurement problem

• Contributions are contingent to the level global risk (and
possibly macroeconomic factors, e.g. position in the cycle)

• Axioms do not define a unique contribution

• The ADM approach can also be used to disentangle
systematic and unsystematic components

• The ADM approach implies no restriction on the global risk
measure.
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